School of Computing and Information Systems

The University of Melbourne

Debugging in Visual Studio Code

1. We will run through an example of debugging a compiled program that tries to calculate factorial

but produces the wrong output.

@

EXPLORER

v COMP

> Assignments

> Lectures

v Workshops
debug
debug.c
helloworld
helloworld.c

= .clang-format

debug.c — COMP

debug.c X

Workshops > debug.c

#include <stdio
#define FACTORIAL 4

1Nt
main() {
t factorial = FACTORIAL;
solut
1; i <= factorial; i++) {
solution x= i;

1
s

printf("The factorial of %d is %d\n", factorial, solution);
return 0;

PROBLEMS OUTPUT DEBU SOLE TERMINAL (3] zsh - Workshops + O w ~ X

tom@My-Computer Workshops % 1ls

debug.c helloworld helloworld.c
tom@My-Computer Workshops % gcc —o debug debug.c
tom@y-Computer Workshops % ./debug

The factorial of 4 is 72

tom@My-Computer Workshops % [

2. Click the Debug menu on the left.
o0 debug.c — COMP

RUN AND DEBUG: RUN debug.c X

Workshops debug.c > ...

Run and Debug #include <stdio.h>

To customize Run and Debug #define FAC

1Nt
main() {
t factorial =
To learn more about i solution;
launch.json, see for (int i = 1; i <= factorial; i++) {
solution %= i;
}.
printf("The factorial of %d is %d\n", factorial, solution);
return 0;

PROBLEMS OUTPUT ONSOLE TERMINAL [>] zsh - Workshops + v [W ~ X

tom@My-Computer Workshops % 1s

debug.c helloworld helloworld.c
tom@My-Computer Workshops % gcc —o debug debug.c
tom@My-Computer Workshops % ./debug

The factorial of 4 is 72

tom@My-Computer Workshops % |:|

Ln15,Col1 Spaces:4 UTF-8 LF C Mac & [

3. To debug you can click “Run and Debug”.
00 debug.c — COMP

RUN AND DEBUG: RUN debug.c X

Workshops > debug.c > ...
Run and Debug #include <stdio.h>

To customize Run and Debug #define FACTORIAL 4

1Nt

main() {
ﬂ’> : int factorial = FACTORIAL;

To learn more about 1t solution;
launch.json, see for (int i = 1; i <= factorial; i++) {
solution x= i;
}
printf("The factorial of %d is %d\n", factorial, solution);

return 0;

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL ZSh-Workshops ++v 0w ~ X

tom@y-Computer Workshops % 1ls

debug.c helloworld helloworld.c
tom@My-Computer Workshops % gcc —o debug debug.c
tom@My-Computer Workshops % ./debug

The factorial of 4 is 72

tom@My-Computer Workshops % []

4. Select “C++ (GDB/LLDB)”.
@ O debug.c — COMP

RUN AND DEBUG: R! | Select environment

C++ (GDB/LLDB)

S B C++ (Windows)

To customize Run Install an extension for C...

1nt
N ; main() { ' .
20 int factorial = FACTORIAL;
To learn more about nt solution;
launch.json, see for (int i = 1; i <= factorial; i++) {
solution *= i;
}
printf(“The factorial of %d is %d\n", factorial, solution);
return 0;

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL zsh - Workshops + v [[J @ ~

tom@y-Computer Workshops % 1s

debug.c helloworld helloworld.c
tom@My-Computer Workshops % gcc —-o debug debug.c
tom@y-Computer Workshops % ./debug

The factorial of 4 is 72

tom@My-Computer Workshops % []

5. Select “gcc”
o debug.c — COMP

RUN AND DEBUG: R | Belect a configuration

gcc - Build and debug active file compiler: Jusr/bin/gcc

Run and C clang - Build and debug active file compiler: Jusr/bin/clang

To customize Run Default Configuration

LI
main() {
int factorial =

To learn more about 1t soluti
launch.json, see for (int i = 1; i <= factorial; i++) {
solution *= i;
),
printf("The factorial of %d is %d\n", factorial, solution);
return 0;

PROBLEMS OUTPUT DEBL SOLE TERMINAL [3] zsh - Workshops + v [W ~ X

tom@My-Computer Workshops % 1s

debug.c helloworld helloworld.c
tom@My-Computer Workshops % gcc -o debug debug.c
tom@My-Computer Workshops % ./debug

The factorial of 4 is 72

tom@My-Computer Workshops % []

6. Before you debug, you may wish to add a breakpoint to stop the program at that line. You can do

this by clicking to the left of the line number and a red dot will appear.
P 0O debug.c — COMP

RUN AND DEBUG debug.c X

v RUN Workshops > debug.c >
#include <stdio.
Run and Debug
#define FAC
To customize Run and Debug

1t factorial = FACTORIAL;
1t solution;
for (int i = 1; i <= factorial; i++) f{
solution *= ij;

main() {
ﬂl’>

To learn more about
launch.json, see

printf(“The factorial of %d is %d\n", factorial, solution);
return 0;

7. When you “Run and Debug” the program stops at the breakpoint. Note the Variables presented in
the top left and their live values. We may already notice an issue, before line 10 is run (the
current line is highlighted in yellow), the value for the solution is 3.

R.. > gcc - Build and v

v VARIABLES
v Locals
factorial: 4
solution: 3
g il
> Registers

g

v WATCH

debug.c — COMP

debug.c X {} launch.json

Workshops > debug.c > @ main()

#include <stdio.h>
#define FACTORIAL 4

int
main() {
1t factorial = FACTORIAL;
int solution;
for (int i = 1; i <= factorial; i++) {
solution %= i;
\
printf("The factorial of %d is %d\n", factorial, solution);
return 0;

8. We can run the program with the coloured buttons at the top, choosing options to move line by
line, to the next break point and other useful options. As we can see, after line 10 is run, the code
goes back to line 9 after multiplying ‘solution’ by ‘i’.

R.. > gcc - Build and v

v VARIABLES
v Locals
factorial: 4
solution: 3
g al

> Registers

2a

v WATCH

debug.c — COMP

debug.c X {} launch.json

Workshops debug.c > @ main()

#include <stdio.h>
#define FA L4

1r
main() {
1t factorial = FACTO
solution;
i <= factorial; i++) {

solution *x= 1i;
1
printf(“The factorial of %d is %d\n", factorial, solution);
return 0;

9. The value of ‘1’ is incremented by 1.

o debug.c — COMP

R. D gec-Buldandv & - debug.c X {} launch.json

v VARIABLES Workshops > debug.c > @ main()
v Locals #include <stdio.h>

factorial: 4

X #define FACTORL
solution: 3

i: 2 ir
JRegisters main() {
factorial =
t solution;
~ WATCH for (int i = 1; i <= factorial; i++) f{
solution *= i;

printf("The factorial of %d is %d\n", factorial, solution);
return 0;

\ CALL STACK PAUSED ON BREAKPOI...

10. The value of ‘solution’ is multiplied by ‘i” which is assigned 6. The factorial seems to be working
apart from the initial value.

® debug.c — COMP

R.. > gec-Buildandv §8% .-+ debug.c X {} launch.json

v VARIABLES Workshops > debug.c > @ main()
v Locals #include <stdio.h>
factorial: 4)
: #define FACTORIAL 4
solution: 6

i: 2 int

N

N > Registers main() f
£ int factorial = FACTORIAL;
1t solution;
~ WATCH for (int 1; i <= factorial; i++) {
solution *= i;
1,,
printf("The factorial of %d is %d\n', factorial, solution);
return 0;

11. We run through the program until the loop exits and the value of ‘solution’ is 72, we can divide
this by the initial value 3 in the terminal value to check the actual solution. 4! = 24. We need to
initialise ‘solution’ on line 8 to 1.

o0 debug.c — COMP

R.. > gec-Buildandv §8% -+ debug.c X {} launch.json

v VARIABLES Workshops > debug.c > @ main()
v Locals #include <stdio.h>

factorial: 4

#define FACTORIA
solution: 72

> Registers]

main() {
to] int factorial = F
1t solutio
for (int i = 1; i <= factorial; i++) {
solution *= i;
1[.
printf("The factorial of %d is %d\n", factorial, solution);
return 0;

v CALL STACK PAUSED ON STEP
debug!main debug.c 121
libdyld.dyli
libdyld.dylib

PROBLEMS OUTPUT DEBUG CONSOLE --* Filter (e.g. text, !exclude)

Loaded '/usr/lib/system/libsystem_symptoms.dylib'. Symbols loaded.
Loaded '/usr/lib/system/libsystem_trace.dylib'. Symbols loaded.
Loaded '/usr/lib/system/libunwind.dylib'. Symbols loaded.
Loaded '/usr/lib/system/libxpc.dylib'. Symbols loaded.

Loaded '/usr/lib/libc++abi.dylib'. Symbols loaded.

Loaded '/usr/lib/libobjc.A.dylib'. Symbols loaded.

Loaded '/usr/lib/liboah.dylib'. Symbols loaded.

Loaded '/usr/lib/libc++.1.dylib'. Symbols loaded.

Execute debugger commands using "-exec <command>", for example
registers in gse (when GDB is the debugger)

solution/3
v BREAKPOINTS 24

"-exec info registers" will list

¥ debug.c Workshops
® 0 A 0 £ gce - Build and debug active file (COMP, Ln12 Col1 Spaces:4 UTF-8 LF C Mac & (2

12. Note, had we added the flag “-Wall” (Warnings All) to the compilation line we would have
received a warning message and note making the problem obvious.
o0 debug.c — COMP

R.. > gcc-Buildandv §8% --- debug.c X {} Iz

v VARIABLES Workshops debug.c > @ main()
#include <stdio.h>

#define FACTO

main() {
ﬂ'> 1t factorial = F
v WATCH 1t solution;
for (int i = 1; i <= factorial; i++) {
solution %= ij;
printf("The factorial of %d is %d\n", factorial, solution);
return 0;

Vv CALL STACK

PROBLEMS OUTPUT DEB (JLE TERMINAL zsh - Workshops + v [IJ W

tom@y-Computer Workshops % 1s

debug.c helloworld helloworld.c

tom@My-Computer Workshops % gcc -o debug debug.c

tom@y-Computer Workshops % ./debug

The factorial of 4 is 72

tom@My-Computer Workshops % gcc|-Wall o debug debug.c

debug.c:10:9: warning: variable ““sotwiion' is uninitialized when used here [-Wuninitialized]
solution %= i;

debug.c:8:17: initialize the variable 'solution' to silence this warning
int solution;

v BREAKPOINTS 1
1 warning generated.

¥ debug.c Workshops 10 tom@My-Computer Workshops % [
oA & gcc - Build and debug active file (COMP) Ln12, Col1 Spaces:4 UTF-8 LF C Mac

Prepared by Thomas Minuzzo, February 2022
© The University of Melbourne, 2022

